
Minimum Weight Cycles and Triangles:
Equivalences and Algorithms

Liam Roditty
Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel

Email: liamr@macs.biu.ac.il

Virginia Vassilevska Williams
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720, USA

Email: virgi@eecs.berkeley.edu

Abstract— We consider the fundamental algorithmic prob-
lem of finding a cycle of minimum weight in a weighted
graph. In particular, we show that the minimum weight cycle
problem in an undirected n-node graph with edge weights in
{1, . . . ,M} or in a directed n-node graph with edge weights
in {−M, . . . ,M} and no negative cycles can be efficiently re-
duced to finding a minimum weight triangle in an Θ(n)−node
undirected graph with weights in {1, . . . , O(M)}. Roughly
speaking, our reductions imply the following surprising phe-
nomenon: a minimum cycle with an arbitrary number of
weighted edges can be “encoded” using only three edges
within roughly the same weight interval!

This resolves a longstanding open problem posed in a
seminal work by Itai and Rodeh [SIAM J. Computing 1978]
on minimum cycle in unweighted graphs.

A direct consequence of our efficient reductions are
Õ(Mnω) ≤ Õ(Mn2.376)-time algorithms using fast matrix
multiplication (FMM) for finding a minimum weight cycle
in both undirected graphs with integral weights from the
interval [1,M] and directed graphs with integral weights from
the interval [−M,M]. The latter seems to reveal a strong
separation between the all pairs shortest paths (APSP) problem
and the minimum weight cycle problem in directed graphs
as the fastest known APSP algorithm has a running time of
O(M0.681n2.575) by Zwick [J. ACM 2002].

In contrast, when only combinatorial algorithms are al-
lowed (that is, without FMM) the only known solution to
minimum weight cycle is by computing APSP. Interestingly,
any separation between the two problems in this case would be
an amazing breakthrough as by a recent paper by Vassilevska
W. and Williams [FOCS’10], any O(n3−ε)-time algorithm
(ε > 0) for minimum weight cycle immediately implies a
O(n3−δ)-time algorithm (δ > 0) for APSP.

Keywords-minimum cycle, girth, triangle, equivalence, re-
duction, matrix multiplication

1. INTRODUCTION

We consider the algorithmic problem of finding a
cycle of minimum weight in weighted directed and
undirected graphs. Surprisingly, although the problem
is very fundamental, the state of the art for it dates
back to a seminal paper by Itai and Rodeh [10] from the
1970s, that deals only with the unweighted variant of the

problem. Itai and Rodeh presented an O(nω)-time algo-
rithm for an n-node unweighted undirected graph and an
O(nω log n)-time algorithm for an n-node unweighted
directed graph. (Here ω is the exponent of square matrix
multiplication over a ring; ω < 2.376 [4].) In the
same paper, Itai and Rodeh posed the question whether
similar results exist for weighted graphs. In this paper
we provide a positive answer to this longstanding open
problem by presenting Õ(Mnω)-time algorithms for
directed graphs with integral edge weights in [−M,M]
(and no negative cycles) and for undirected graphs with
integral edge weights in [1,M].

Our algorithmic results are obtained using new re-
ductions that carefully combine new algorithmic ideas
and special combinatorial properties of the minimum
weight cycle. More specifically, we reduce the problem
to finding a minimum weight triangle in a Θ(n)−node
undirected graph with weights in {1, . . . , O(M)}. This
reveals also a surprising phenomenon: a minimum cycle
with an arbitrary number of weighted edges can be
efficiently “encoded” using a cycle of only three edges
whose weights are roughly within the same interval!
Moreover, our results imply a strong equivalence be-
tween the cycle and triangle problems.

Minimum cycle and APSP: Recently, Vassilevska
W. and Williams [19] showed that the minimum weight
cycle problem is equivalent to many other graph and
matrix problems for which no truly subcubic (O(n3−ε)-
time for constant ε > 0) algorithms are known. They
showed that if there is a truly subcubic algorithm for
the minimum weight cycle problem, then many other
problems such as the all pairs shortest paths (APSP)
problem also have truly subcubic algorithms. Hence,
the minimum weight cycle problem has a pivotal role
in understanding the complexity of many fundamental
polynomial problems in a similar spirit to the role of
3SAT for NP-hard problems.

It is interesting to compare the minimum cycle

problem with APSP. In directed graphs, the mini-
mum weight cycle can be computed easily by com-
puting APSP. Given the distance d[u, v] between all
pairs of vertices u, v, the weight of the minimum
cycle is minu,v w(u, v) + d[v, u]. Hence, we can com-
pute the minimum weight cycle in cubic time using
Floyd-Warshall’s APSP algorithm [6], [18] (or Pettie’s
O(mn + n2 log log n) time algorithm [12] if the graph
has m edges). If the edge weights are integers in
[−M,M], we can use Zwick’s [22] O(M0.681n2.575)
time algorithm to obtain an algorithm for minimum
cycle with the same runtime. Improving Zwick’s run-
ning time, and in particular obtaining an Õ(Mnω)
running time for APSP in directed graphs, is one of
today’s frontier questions in graph algorithms. Our new
Õ(Mnω)-time algorithm for minimum cycle in directed
graphs shows that it is not really necessary to compute
all pairs shortest paths in order to compute the minimum
weight cycle in directed graphs. This seems to reveal
a strong separation between APSP and the minimum
cycle problem in directed graphs.

The minimum cycle problem in undirected graphs
differs from the problem in directed graphs in that the
reduction to APSP no longer works: an edge (u, v)
might also be the shortest path from v to u, and
minu,v w(u, v) + d[v, u] might be 2w(u, v) and not the
weighted girth of the graph. This represents a nontrivial
hurdle. Nevertheless, in this paper we show how to
overcome this hurdle and obtain an Õ(Mnω) time
algorithm for undirected graphs with integer weights
in [1,M]. This matches the runtime of the best APSP
algorithm in such graphs: In 1992, Seidel [16] showed
that APSP in undirected, unweighted n-node graphs can
be solved in Õ(nω) time. Later in 1999, Shoshan and
Zwick [17] (following Galil and Margalit [8]) showed
that APSP in undirected n-node graphs with integer
edge weights in [0,M] can be solved in Õ(Mnω)
time, thus extending Seidel’s running time to weighted
undirected graphs.

Our results: reductions and algorithms: We de-
velop our algorithms by first obtaining extremely effi-
cient reductions from the minimum weight cycle prob-
lem to the minimum weight triangle problem which
preserve the interval in which the weights lie, within
a constant factor.
Undirected graphs. Our results are as follows.

Theorem 1. Let G(V,E,w) be an undirected graph
with w : E → {1, . . . ,M} and let C be a minimum
cycle in G. There is an O(n2(log nM) log n) time
deterministic algorithm that computes a cycle Ĉ and
constructs O(log n) graphs G′1, . . . , G

′
k on Θ(n) nodes

and edge weights in {1, . . . , O(M)} such that either
w(Ĉ) = w(C) or the minimum out of all weights of
triangles in the graphs G′i is exactly w(C).

Since a minimum weight triangle in a graph with
weights bounded by O(M) can be found via a single
distance product computation in Õ(Mnω) time [1],
[21], we obtain the following corollary.

Corollary 1. A minimum weight cycle in an n-node
undirected graph with integer edge weights in [1,M]
can be found in Õ(Mnω) time.

Directed graphs. Our reduction for undirected graphs
relies on the fact that distances are symmetric. It is
unlikely that it is possible to modify the reduction so
that it works for directed graphs as well. Hence, for
directed graphs new ideas are required. The reduction
to minimum triangle is not as efficient, however, the re-
sulting algorithm for minimum cycle in directed graphs
has the same running time as the one for undirected
graphs with nonnegative weights. Our approach for
directed graphs can be combined with our approach for
undirected graphs to yield an efficient algorithm also
for mixed graphs, that is, graphs which contain both
directed and undirected edges. The approach works,
provided the weights of the mixed graph are nonnega-
tive. (The details for mixed graphs are in the full version
of the paper [14].)

When negative edge weights are allowed, a negative
cycle may exist. Finding a minimum weight cycle when
its weight is negative is an NP-hard problem, as it solves
Hamiltonian cycle. When negative weights are allowed,
the minimum cycle problem in the absence of negative
cycles is in P for both directed and undirected graphs,
but is NP-hard for mixed graphs [3]. Our techniques for
directed graphs are strong enough to support negative
edge weights within the same running time as when the
weights are nonnegative. This is extremely interesting,
as the typical way to reduce the general problem to
the nonnegative weights problem involves computing
node potentials (see e.g. [9]). These potentials however
typically increase the magnitude of the weights to
Ω(Mn), which would be bad if our goal is to use
algorithms that have exponential dependence on the bit
representation of the weights, such as Õ(Mnω). We
circumvent the potential approach by focusing on the
general problem directly. We obtain:

Theorem 2. Let G(V,E,w) be a directed graph on
n nodes, w : E → {−M, . . . ,M}. In Õ(Mnω) time
one can construct O(log n) graphs G′1, . . . , G

′
k on Θ(n)

nodes and edge weights in {1, . . . , O(M)} so that the

minimum out of all weights of triangles in the graphs
G′i is exactly the weighted girth of G.

Our results: equivalences: Vassilevska W. and
Williams [19] showed that the minimum triangle and
minimum cycle problems are equivalent, under subcubic
reductions. Their reduction from minimum triangle to
minimum cycle only increased the number of nodes
and the size of the edge weights by a constant fac-
tor. However, their reduction from minimum cycle to
minimum triangle was not tight; it only proved that
an O(n3−ε) algorithm for minimum triangle would
imply an O(n3−ε/3) algorithm for minimum cycle. Our
reductions, on the other hand, imply a much stronger
equivalence between the two problems. This equiva-
lence is especially strong for undirected graphs with
integral weights from the range [1,M].

Corollary 2. If there is a T (n,M) time algorithm
for the minimum cycle problem in undirected graphs
with integral edge weights in [1,M], then there is
a T (O(n), O(M)) + O(n2) time algorithm for the
minimum triangle problem in such graphs. Conversely,
if there is a T (n,M) time algorithm for the min-
imum triangle problem in undirected graphs with
integral edge weights in [1,M], then there is an
O(T (O(n), O(M)) log n+n2 log n log nM) time algo-
rithm for the minimum cycle problem in such graphs.

A natural question is whether the triangle problem is
special. Do similar reductions exist between minimum
cycle and minimum k-cycle for constant k > 3? We
answer this in the affirmative. (The proof of Theorem 3
below is in the full version of the paper [14].)

Theorem 3. Let k be a fixed constant. Let G(V,E,w)
be an n-node graph, w : E → {1, . . . ,M}. One can
construct O(log n) undirected graphs G′1, . . . , G

′
` on

Θ(kn) nodes and edge weights in {1, . . . , O(M)} so
that the minimum out of all weights of k-cycles in the
graphs G′i is the weighted girth of G. Moreover, given
the minimum weight k-cycle of the G′i, one can find a
minimum weight cycle of G in O(n) additional time. If
G is directed, the reduction runs in Õ(Mnω) time, and
if G is undirected, it runs in Õ(n2 log nM) time.

Our results: approximation: Another approach to
gain efficiency for problems with seemingly no sub-
cubic time exact algorithms has been to develop fast
approximation algorithms (see [5], [22] in the con-
text of shortest paths). Lingas and Lundell [11] gave
two approximation algorithms for minimum cycle: an
Õ(n1.5) time 8/3-approximation for undirected un-
weighted graphs, and an O(n2(log n) log nM) time 2-

approximation for undirected graphs with weights in
{1, . . . ,M}. Very recently, Roditty and Tov [13] im-
proved the approximation factor to 4/3-approximation
for the weighted case while keeping the running time
unchanged. Due to Zwick’s [22] Õ(nω/ε log(M/ε))
time (1 + ε)-approximation for APSP and the sim-
ple reduction from minimum weight cycle in directed
graphs to APSP, the girth of a directed graph admits
a (1 + ε)-approximation in Õ(nω/ε log(M/ε)) time.
Our reduction from Theorem 1 implies the same result
for undirected graphs with nonnegative weights as well,
following up on the work of Roditty and Tov [13].

Theorem 4. There is an Õ(nω/ε log(M/ε)) time (1 +
ε)-approximation algorithm for the minimum cycle in
undirected graphs with integral weights in [1,M].

2. PRELIMINARIES

Let G(V,E,w) be a weighted graph, where V is
its set of vertices or nodes (we use these terms in-
terchangeably), E ⊆ V × V is its set of edges, and
w : E → {1, . . . ,M} is a weight function. The function
w(·, ·) can be extended to the entire V × V by setting
w(u, v) = ∞ for every (u, v) /∈ E. Unless otherwise
noted, n refers to the number of nodes in the graph.

An edge can be directed or undirected. An undirected
graph is a graph with undirected edges only and a
directed graph is a graph with directed edges only.
A graph is simple if it does not contain self loops
or multiple copies of the same edge. In a directed
graph, two directed edges (x, y) and (y, x) in opposite
directions are allowed since they are considered distinct.
All graphs considered in this paper are simple.

We define a cycle C in a graph G(V,E,w) to be
an ordered set of vertices {v1, v2, . . . , v`}, such that
(vi, vi+1) ∈ E for every i < ` and (v`, v1) ∈ E. Let
w(C) be the sum of the weights of the edges of C
and let wmax(C) be the weight of the heaviest edge.
We denote with dC [vi, vj] the weight of the path that
traverses the cycle from vi to vj by passing from vi
to vi+1 and so on. In the case that j < i we traverse
from v` to v1 and continue until we reach vi. Let n(C)
denote the number of vertices/edges in C. A cycle C
is simple if no node or edge appears twice in C. With
this definition, an undirected graph cannot have a simple
cycle on 2 nodes, whereas directed graphs can, provided
the two cycle edges are in opposite directions.

3. OUR APPROACH

Our reductions are based on a combinatorial property
of cycles in weighted directed, undirected and mixed
graphs that might be of independent interest. This

property is extremely useful as it shows that crucial
portions of the minimum weight cycle are shortest paths.
We present this property in the following lemma.

Lemma 1 (Critical edge). Let G(V,E,w) be a weighted
graph, where w : E → R, and assume that G does not
contain a negative cycle. Let C = {v1, v2, . . . , v`} be a
cycle in G of weight w(C) ≥ 0 and let s ∈ C. There
exists an edge (vi, vi+1) on C such that dw(C)/2e −
w(vi, vi+1) ≤ dC [s, vi] ≤ bw(C)/2c and dw(C)/2e −
w(vi, vi+1) ≤ dC [vi+1, s] ≤ bw(C)/2c. Furthermore,
if C is a minimum weight cycle in G then d[s, vi] =
dC [s, vi] and d[vi+1, s] = dC [vi+1, s].

Proof: We can assume, wlog, that s = v1. We
start to traverse along C from v1 until we reach
the first edge (vi, vi+1) that satisfies dC [v1, vi] ≤
bw(C)/2c and dC [v1, vi] + w(vi, vi+1) ≥ dw(C)/2e.
Since dC [v1, v1] = 0 ≤ bw(C)/2c either we find an
edge (vi, vi+1) that satisfies the requirement, where
i < ` or we reach v` without finding such an edge.
In the latter case dC [v1, v`] ≤ bw(C)/2c and since
dC [v1, v`] + w(v`, v1) = w(C) ≥ dw(C)/2e the edge
(v`, v1) satisfies the requirement.

It follows immediately from the properties of the edge
(vi, vi+1) that dC [v1, vi] ≥ dw(C)/2e − w(vi, vi+1)
and hence we get that dw(C)/2e − w(vi, vi+1) ≤
dC [v1, vi] ≤ bw(C)/2c as required.

We now bound dC [vi+1, v1]. Recall, dC [vi+1, v1] =
w(C) − (dC [v1, vi] + w(vi, vi+1)). Since dC [v1, vi] +
w(vi, vi+1) ≥ dw(C)/2e we get that dC [vi+1, v1] ≤
bw(C)/2c. Also, since dC [v1, vi] ≤ bw(C)/2c we get
that dC [vi+1, v1] ≥ dw(C)/2e − w(vi, vi+1).

It remains to show that if C is a minimum weight
cycle, then d[v1, vi] = dC [v1, vi] and d[vi+1, v1] =
dC [vi+1, v1]. If G is a directed graph, then it is straight-
forward to see that the minimality of C implies that
dC [u, v] = d[u, v] for every u, v ∈ C and in particular
d[v1, vi] = dC [v1, vi] and d[vi+1, v1] = dC [vi+1, v1]
as required. Thus, we only need to consider the case
that G is an undirected graph. From the first part of
the proof we know that dC [vi+1, v1] ≤ bw(C)/2c. If
d[vi+1, v1] < dC [vi+1, v1], then let P be the path from
vi+1 to v1 of weight d[vi+1, v1] and let C2 be the
portion of C from v1 to vi+1. The union of P and
C2 is a walk in G whose weight is strictly less than
w(C). Furthermore, since d[vi+1, v1] < dC [vi+1, v1] ≤
bw(C)/2c ≤ w(C2), P and C2 must differ by at least
one edge and hence P ∪ C2 contains some simple
cycle of weight less than w(C), a contradiction to
the minimality of C. The argument for showing that
d[v1, vi] = dC [v1, vi] is symmetric.

Lemma 1 shows that it is possible to decompose

every cycle into three portions: a single edge of weight
at most O(M) and two pieces whose weight differs
by at most O(M), and which are shortest paths if the
cycle is of minimum weight. This observation is crucial
for our efficient reductions. Another important piece of
Lemma 1 is that every vertex on the cycle has a critical
edge. This is crucial in the directed graph case.

Armed with Lemma 1 we can describe the general
framework of our approach. Suppose that we have some
way to compute a function D : V×V → R that satisfies:

• For every u, v ∈ V , d[u, v] ≤ D[u, v]
• There exists a vertex v on the minimum cycle

C whose critical edge (x, y) endpoints satisfy
D[v, x] = d[v, x] and D[y, v] = d[y, v].

In Section 4 we show how to compute a function
D in O(n2 log n logMn) time for undirected graphs
with integral weights from [1,M], and in Section 5 we
show how to compute a function D in Õ(Mnω) time
for directed graphs with integral weights from [−M,M]
and no negative cycles.

Now consider the following (multi-)graph
G′(V ′, E′, w′) where V ′ = V 1 ∪ V 2 and V 1, V 2

are disjoint copies of V . For every D[a, b] which was
computed we place an edge between a1 ∈ V 1 and
b2 ∈ V 2 and (for directed graphs) also one between
a2 ∈ V 2 and b1 ∈ V 1. These edges get weight
D[a, b] and correspond to the two large portions of
the minimum cycle. Further, for every edge (a, b) in
G, we add an edge from a2 ∈ V 2 to b2 ∈ V 2 with
weight w(a, b), i.e. V 2 induces a copy of G; these
edges correspond to the critical edge of the minimum
cycle. In our reduction for directed graphs we further
transform G′ into a simple undirected tripartite graph.

Consider v, x, y from the second bullet above. By
Lemma 1, D[v, x] + w(x, y) + D[y, v] = dC(v, x) +
w(x, y) + dC(y, v) = w(C). Hence G′ will contain
{v1, x2, y2} as a triangle of weight w(C). Our re-
ductions in the next two sections give transformations
which ensure that every triangle in G′ corresponds to
a simple cycle in G and that {v1, x2, y2} is preserved
as a triangle. Since the values D[·, ·] are upper bounds
on the distances, {v1, x2, y2} is a minimum weight
triangle in G′. The graph G′ however can have really
large weights; D[·, ·] can be as large as Mn in general.
Thus our transformations also apply a weight reduction
technique which reduces all edge weights to the interval
[−O(M), O(M)]. This technique is different for undi-
rected and directed graphs.

Finding a minimum cycle: Our reductions show
that the minimum cycle problem can be efficiently
reduced to the minimum triangle problem in a different

graph with roughly the same number of nodes and
weight sizes. Here we briefly discuss how one can
actually find a minimum weight triangle in an n-node
graph G(V,E,w) with integral edge weights in the
interval [−M,M]. With our reductions, this will give
algorithms for the minimum cycle problem as well.

Let A be the n × n adjacency matrix of G de-
fined as A[i, j] = w(i, j) whenever (i, j) ∈ E and
A[i, j] = ∞ otherwise. A well known approach to
finding a minimum weight triangle mimics Itai and
Rodeh’s algorithm for unweighted triangle finding [10].
It first computes the distance product of A with itself,
(A ? A)[i, j] = mink A[i, k] + A[k, j], to find for every
pair of nodes i, j the minimum length of a path with
at most 2 edges between them. Then, the weight of a
minimum triangle is exactly mini,j A[j, i]+(A?A)[i, j].
Finding the actual triangle takes only O(n) time after
one finds i, j minimizing the above expression. Thus the
running time is dominated by the time for computing
A ? A. The algorithm of Alon, Galil and Margalit [1]
(following Yuval [21]) does this in Õ(Mnω) time,
whenever the entries of A are in {−M, . . . ,M}. Hence
a minimum triangle, can be found in Õ(Mnω) time.

4. MINIMUM WEIGHT CYCLE IN UNDIRECTED
GRAPHS WITH WEIGHTS IN {1, . . . ,M}

Let G(V,E,w) be an undirected graph with integral
edge weights from the range [1,M]. In this section
we show that in Õ(n2 logMn) time we can compute
a cycle whose weight is at most twice the weight of
the minimum weight cycle and a new undirected graph
G′(V ′, E′, w′) with integral weights from the range
[−M,M] whose minimum triangle if exists corresponds
to the minimum weight cycle in G, with constant
probability. (To boost the probability of success, we
actually create O(log n) graphs G′.) If G′ does not have
a triangle then the cycle that we have computed is the
minimum weight cycle of G. We start by presenting
an Õ(n2) time algorithm that given an integer t either
reports a cycle of length 2t or computes all distances
up to t. The computed distances are used to form G′.

Cycle or Distance Computation: The algorithm
works in iterations and in each iteration it repeats the
same procedure from a new vertex of the graph. This
procedure is a simple adaptation of Dijkstra’s algorithm.
The input in each iteration is a source vertex s and an
integer value t. The algorithm either reports a cycle of
length at most 2t or computes the distances from s to
every vertex that is within distance t from s. Lingas
and Lundell [11] used a similar approach in order to
compute a 2-approximation of the minimum weight
cycle. Their algorithm, however, either returns a cycle

of length at most 2t or computes the distances from s
to every vertex that is within distance 2t from s. This
small difference between the two algorithms is crucial
for our needs. Pseudocode is given in Algorithm 1. The
algorithm repeats the procedure Cycle? n times, each
time with a different vertex. Every run of Cycle? takes
at most O(n log n) time since it stops with the first cycle
it detects, and thus the algorithm runtime is O(n2 log n).

In the next Lemma we prove an important property
of the algorithm.

Lemma 2. For any integer t, Min-Cycle(G, t) either
finds a cycle of weight at most 2t, or computes all
distances of length at most t.

Proof: A cycle is reported when a vertex u is
extracted from the priority queue Q and for one of
its edges (u, v) that is being relaxed the value of d[v]
before the relaxation is not infinity. As any distance
and any distance estimation are at most t, if a cycle
is reported it must be of length at most 2t. If a cycle
is not reported, then our algorithm is almost identical
to Dijkstra’s algorithm. The only difference is that our
algorithm relaxes an edge (u, v) when u is extracted
from the priority queue if and only if d[u]+w(u, v) ≤ t,
while Dijkstra’s algorithm relaxes all edges of u with
no restriction. This implies that our algorithm computes
all distances that are smaller or equal t.

Algorithm 1: Min-Cycle(G, t)

foreach s ∈ V do
C′ ← Cycle?(G, s, 2t);
if w(C′) < w(C∗) then C∗ ← C′

return C∗

Algorithm 2: Cycle?(G, s, t′)

foreach v ∈ V do d[v]←∞;
d[s] = 0;
Q← {s};
while Q 6= ∅ do

u← Extract-Min(Q);
Controlled-Relax(u, t′/2);

The reduction to minimum triangle: Our goal is
to prove Theorem 1. The main part of the proof is
describing an algorithm that computes an upper bound
for the minimum weight cycle and an instance G′ of
minimum triangle, such that either the girth of the graph
is exactly the upper bound, or with constant probability
the minimum triangle weight in G′ is the girth of G.
Below we only present G′ as having large weights. Later

Algorithm 3: Controlled-Relax(u,wu)

(u, v)← Extract-Min(Qu);
while d[u] + w(u, v) ≤ wu do

if d[v] 6=∞ then
report a cycle and stop;

else
Relax(u, v);

(u, v)← Extract-Min(Qu);

on, we find a value t with which we use Lemma 2, so
that 2t is a bound on the minimum cycle weight that
is tight within O(M). As mentioned in Section 3, this
value allows us to reduce the weights of G′ so that they
fall in the interval [−O(M), O(M)].

Reminder of Theorem 1 Let G(V,E,w) be an undi-
rected graph with w : E → {1, . . . ,M} and let C be a
minimum cycle in G. There is an O(n2(log nM) log n)
time deterministic algorithm that computes a cycle Ĉ
and constructs O(log n) graphs G′1, . . . , G

′
k on Θ(n)

nodes and edge weights in {1, . . . , O(M)} such that
either w(Ĉ) = w(C) or the minimum out of all weights
of triangles in the graphs G′i is exactly w(C).

The weight of the minimum cycle is an integer value
from the range [1, nM]. From Lemma 2 it follows that
we can use algorithm Min-Cycle to perform a binary
search over this range in order to find the largest value
t ∈ [1, nM] for which Min-Cycle(G, t) does not report
a cycle but computes all distances of length at most t.
This implies that by running Min-Cycle(G, t + 1) we
obtain a cycle of weight at most 2t+2. Hence, we only
need to show that it is possible to detect the minimum
cycle in the case that its weight w(C) is 2t+ 1 or less.
Let us first prove some consequences of the fact that
Min-Cycle(G, t) does not report a cycle.

Lemma 3. Let C = {v1, v2, . . . , v`} be a minimum
cycle in G(V,E,w). Suppose that Min-Cycle(G, t) does
not report a cycle. There are three distinct vertices
vi, vi+1, vj ∈ C such that dC [vj , vi] + w(vi, vi+1) > t
and dC [vi+1, vj] + w(vi, vi+1) > t.

Proof: Let (vi, vi+1) be the critical edge for v1
given by Lemma 1. Assume first that v1 6= vi and
v1 6= vi+1. If either dC [v1, vi] + w(vi, vi+1) ≤ t
or dC [vi+1, v1] + w(vi, vi+1) ≤ t then the edge
w(vi, vi+1) is relaxed. Assume that we are in the case
that dC [v1, vi] + w(vi, vi+1) ≤ t. Then after (vi, vi+1)
is relaxed d[vi+1] ≤ t. If d[vi+1] < ∞ before the
relaxation of (vi, vi+1) the algorithm stops and reports a
cycle. If d[vi+1] =∞ before the relaxation of (vi, vi+1)
then a cycle will be detected as well but only when the

edge (vi+2, vi+1) is relaxed. This edge must be relaxed
since dC [vi+1, v1] ≤ bw(C)/2c ≤ t which implies that
vi+2 will be extracted and its edge (vi+2, vi+1) will
satisfy the relaxation requirement and will be relaxed.
We conclude that if either dC [v1, vi] + w(vi, vi+1) ≤ t
or dC [vi+1, v1] +w(vi, vi+1) ≤ t then Min-Cycle(G, t)
must report a cycle, giving a contradiction.

We now turn to the case that either v1 = vi or v1 =
vi+1. Assume wlog that v1 = vi, that is, (vi, vi+1) =
(v1, v2). From Lemma 1 we know that w(v1, v2) ≥
dw(C)/2e and dC [v2, v1] ≤ bw(C)/2c. We also know
that there is at least one additional vertex v` between
v2 and v1 on the cycle C. We now apply Lemma 1 on
the vertex v`. It is easy to see that in that case the edge
(v1, v2) will be the critical edge of v` as well. We now
have three different vertices and the rest of this case is
identical to the first case.

As a first attempt, we create the new graph
G′(V ′, E′, w′) as follows. The vertex set V ′ contains
two copies V 1 and V 2 of V . For i = 1, 2, let Ei be
the set of edges with both endpoints in V i. The set E1

is empty and the set E2 is E, that is, (u2, v2) ∈ E2

if and only if (u, v) ∈ E. Let E12 be the set of edges
with one endpoint in V 1 and one endpoint in V 2. Let
u1 ∈ V 1 and v2 ∈ V 2. If the distance between u and
v was computed by Min-Cycle(G, t) then we add an
edge (u1, v2) to E12 with weight d[u, v]. We show that
there is triangle in G′(V ′, E′, w′) that corresponds to
the minimum cycle of G and has the same weight.

Claim 5. Let C = {v1, v2, . . . , v`} be a minimum cycle
in G(V,E,w), w(C) ≤ 2t + 1. There exists a triangle
in G′(V ′, E′, w′) on vertices of C of weight w(C).

Proof: Without loss of generality, let v1 be the ver-
tex vj from Lemma 3, and let vi and vi+1 be the other
two vertices. From Lemma 3 we know that all three
vertices are distinct and that dC [v1, vi]+w(vi, vi+1) > t
and dC [vi+1, v1] + w(vi, vi+1) > t. Combining this
with the fact that C is a minimum cycle and w(C) ≤
2t + 1 we get that d[v1, vi] = dC [v1, vi] ≤ t and
d[vi+1, v1] = dC [vi+1, v1] ≤ t. When Cycle? is run
from v1 it computes d[v1, vi] and d[v1, vi+1]. Hence,
there must be a triangle of weight w(C) in G′ on the
vertices v11 ,v2i and v2i+1.

The claim above shows only one direction, that is, if
there is a minimum cycle C of weight at most 2t+1 in G
then there is a corresponding triangle in G′ on vertices
y2, z2 ∈ V 2 and x1 ∈ V 1, that correspond to vertices of
C with the same weight. To complete the reduction we
must show that there are no false positives: triangles
in G′ of smaller weight which do not correspond to

a minimum cycle of G. Unfortunately, this is not the
case and G′ may have such false triangles with smaller
weight, as in the following example: Let x, y, z ∈ V . If
there is a shortest path of length at most t from x to z
whose last edge is (y, z) then there is a triangle in G′.
To see that, notice that there are two different shortest
paths one from x to z and one from x to y, both of
length at most t. In such a case, the graph G′ includes
the edges (x1, y2) and (x1, z2) and together with the
edge (y2, z2) they form a triangle. Moreover, such a
triangle has the same structure as a valid triangle and
might be of smaller weight. Thus, a triangle detection
algorithm cannot distinguish between a valid and a false
triangle. In what follows we first show that this is the
only situation in which a false triangle is formed, and
then show a construction that avoids such false triangles.

In the above pathological case the only reason that
the triangle x1, y2, z2 did not correspond to a cycle,
was because we had two different paths P1 and P2 that
both start in the same vertex and the last vertex of one
of these paths was the vertex right before the last vertex
of the other path. In the next lemma we show that this
is the only bad case.

Lemma 4. Let x, y, z ∈ V be three distinct vertices. Let
P1 = y → y′ → . . .→ x and P2 = x→ . . .→ z′ → z
be simple shortest paths between y and x and x and z
respectively. Let y′ 6= z and z′ 6= y and let (z, y) ∈ E.
Then, P1 ∪ P2 ∪ {(z, y)} contains a simple cycle of
weight at most w(P1) + w(P2) + w(z, y).

Proof: Let P−11 be P1 with its edges reversed. Look
at P−11 and P2. There are two options. Either one path
is a subpath of the other, or there is a node x′ such that
x→ . . .→ x′ is a subpath of both, and x′ is followed
by q1 in P−11 and by q2 6= q1 in P2.

Consider the first case. Wlog, P2 is a subpath of P−11

(the other inclusion is symmetric). Since y′ 6= z, the
subpath between y and z on P1 has at least 2 edges, and
adding edge (z, y) produces a simple cycle of weight
less than the sum of the two original path weights.

Consider the second case when x′, q1, q2 exist as
above. If there is some node between x′ and y on P−11

which also appears in P2 after x′, then let q be the
first such node. Then no node on P2 between x′ and
q appears between x′ and q in P−11 . The two disjoint
simple paths between x′ and q form a simple cycle on
at least 3 nodes since q1 6= q2. The weight of this cycle
is less than the sum of the two original path weights.

Finally, suppose no such q exists. Then the subpaths
of P−11 and P2 between x′ and y and x′ and z share no
vertices and hence adding edge (z, y) closes a simple
cycle of weight at most w(P1) + w(P2) + w(z, y).

Lemma 4 implies that our reduction to minimum
triangle will work, provided that we can ensure that for
every triangle x1, y2, z2 in G′, the last node z′ before
z on the shortest path from x to z in G is distinct from
y. To do this, we use the color-coding method from the
seminal paper of Alon, Yuster and Zwick [2]. The idea is
as follows. Let {C1, C2} be two distinct colors. Assign
to every node of G one of these colors independently
and uniformly at random. Fix four vertices y, y′, z, z′.
The probability that color(y′) = color(z′) = C1 and
color(y) = color(z) = C2 is 1/24 = O(1).

Now we will modify G′(V ′, E′, w′) from before.
Recall that V ′ = V 1 ∪ V 2. For every node x of G
we add a copy x1 to V 1, so that V 1 is a copy of V .
Furthermore, if color(x) = C2 we also add a copy x2

to V 2. We now define the set of edges E′. Let Eij be
the set of edges between V i and V j , for i, j ∈ {1, 2}.
The edge set E11 is empty, so E′ = E12 ∪ E22. Let
x, z′, z ∈ V such that (z′, z) is the last edge of the
shortest path from x to z. The sets E12 and E22 are
defined as follows:

E12 = {(x1, z2) | color(z′) = C1 ∧ color(z) = C2},

E22 = {(x2, z2) | color(x) = C2 ∧ color(z) = C2}.

The weight of an edge (x1, z2) ∈ E12 is d[x, z]. The
weight of an edge (x2, z2) ∈ E22 is w(x, z). We now
prove that G′ does not contain false triangles.

Lemma 5. If T = {x, y, z} is triangle in G′ then there
exists a simple cycle C in G such that {x, y, z} ⊆ C
and w(C) ≤ w(T).

Proof: Any triangle in G′ either have one vertex
from V 1 and two vertices from V 2 or all three vertices
from V 2. In the latter case the triangle is also in G so
we focus in the former case, that is, T = {x1, y2, z2} is
a triangle in G′ such that x1 ∈ V 1 and y2, z2 ∈ V 2. Let
x, y, z ∈ V be the vertices that correspond to x1, y2 and
z2 in G. Let y′ (z′) be the last vertex before y (z) on
the shortest path P1 (P2) between x and y (z) in G. The
fact that (x1, y2) ∈ E12 and (x1, z2) ∈ E12 implies that
color(y′) = color(z′) = C1 and color(y) = color(z) =
C2. Hence we get that y′ 6= z and z′ 6= y. Combining
this with the fact that E22 ⊆ E we get that the paths
P1, P2 and the edge (y, z) satisfy the requirements of
Lemma 4, and there is a simple cycle of weight at most
w(P1) + w(P2) + w(y, z) = w(T) in G.

Now that we have shown that G′ does not contain
false triangles we prove that the minimum weight cycle
in G corresponds to a triangle in G′. (This can be
viewed as proving Claim 5 for the new G′).

Claim 6. Let C = {v1, v2, . . . , v`} be a minimum cycle
in G(V,E,w). Assume that w(C) ≤ 2t+ 1. Then there
exists a triangle in G′(V ′, E′, w′) on vertices of C of
weight w(C), with constant probability.

Proof: Without loss of generality, let v1 be the ver-
tex vj from Lemma 3, and let vi and vi+1 be the other
two vertices. As in the proof of Claim 5, d[v1, vi] =
dC [v1, vi] ≤ t and d[vi+1, v1] = dC [vi+1, v1] ≤ t and
these values are computed by Min-Cycle(G, t) . The
random coloring is successful when color(vi−1) = C1,
color(vi) = C2, color(vi+1) = C2 and color(vi+2) =
C1. The probability that this happens is 1/24 = O(1).
The triangle {v11 , v2i , v2i+1} is in G′ exactly when the
coloring is successful, and hence C is represented by
that triangle in G′ with constant probability. The weight
of the triangle {v11 , v2i , v2i+1} is d[v1, vi]+w(vi, vi+1)+
d[vi+1, v1] = w(C).

Weight reduction: Currently, the maximum edge
weight in G′ can be as large as Ω(nM) as the weights
of edges in E12 are distances in G. To complete the
reduction, we show that it is possible to reweight the
edges of G′ without changing the minimum triangle so
that the edge weights will be integers from [−M,M].

The key idea is to use Lemma 3 in two different
ways. As we previously mentioned, Lemma 3 implies
that dC [vj , vi] ≤ t and dC [vi+1, vj] ≤ t. Moreover, the
bounds dC [vj , vi] +w(vi, vi+1) > t and dC [vi+1, vj] +
w(vi, vi+1) > t imply that dC [vj , vi] > t − M and
dC [vi+1, vj] > t−M . Thus, we can remove from E12

every edge of weight strictly more than t and every
edge of weight t−M or smaller with no effect on the
minimum triangle in G′. We now decrease the weights
of all the edges that were left in E12 by t. The weight of
every triangle in G′ with a node from V 1 has decreased
by exactly 2t. Hence, the minimum triangle out of those
with a node in V 1 remains the same. The weights of
edges in E12 are now integers from the interval [−M, 0],
and the rest of the edge weights are still in [1,M].
If the minimum weight triangle in G′ now has nodes
only from V 2, then this triangle was also the minimum
weight one in G′ before the reweighting, and hence
corresponds to a minimum weight cycle, with high
probability. Otherwise, the minimum weight triangle in
G′ has a node from V 1. The minimum out of these
triangles was also the minimum one among the triangles
with a node in V 1 also before the reweighting. Hence
it also corresponds to a minimum weight cycle, with
high probability. This completes the description of our
construction.

Derandomization: The reduction can be made de-
terministic, just as in the color-coding paper of Alon

et al. [2], by using a k-perfect hash family, a family
F = {f1, . . . , f|F |} of hash functions from {1, . . . , n}
to {1, . . . , k} so that for every V ′ ⊂ V with |V ′| = k,
there exists some i so that fi maps the elements of
V ′ to distinct colors. In our case, k = 2. By enu-
merating through the functions of F , and using each
fi in place of the random coloring, our reduction runs
in O(n2(log nM) log n + |F |n2) time, provided each
fi can be evaluated in constant time. Our reduction
produces O(|F |) instances of minimum triangle.

Schmidt and Siegel [15] (following Fredman, Komlos
and Szemeredi [7]) gave an explicit construction of a k-
perfect family in which each function is specified using
O(k)+2 log log n bits. For our case of k = 2, the size of
the family is therefore O(log2 n). The value of each one
of the hash functions on each specified element of V can
be evaluated in O(1) time. Alon, Yuster and Zwick [2],
reduced the size of the hash family to O(log n). Using
this family we can derandomize our reduction so that it
runs in deterministic O(n2(log nM) log n) time.

5. MINIMUM CYCLE IN DIRECTED GRAPHS WITH
WEIGHTS IN {−M, . . . ,M}

In this section we consider directed graphs graphs
with possibly negative weights but no negative cycles.
In contrast to the situation in undirected graphs it is
relatively easy to reduce the minimum cycle problem
in directed graphs to the problem of computing all
pairs shortest paths. If D is the distance matrix of
a directed graph then its minimum cycle has weight
mini,j D[i, j] + w(j, i). Hence, using Zwick’s APSP
algorithm [22] we can compute the minimum cycle in
O(M0.681n2.575) time. In this section we show that
the minimum cycle problem in directed graphs can be
reduced to the problem of finding a minimum triangle in
an undirected graph. This also implies that the minimum
weight cycle in directed graphs can be computed in
Õ(Mnω) time.

Similarly to before, our approach will be to compute
upper bounds on the distances in the graph so that for
some node s on the minimum cycle C and its critical
edge (vi, vi+1) we obtain the exact distances d[s, vi] =
dC [s, vi] and d[vi+1, s] = dC [vi+1, s].

Computing cycle distances: The Dijkstra-like ap-
proach in the previous section does not work for
directed graphs. It also only applies when the edge
weights are nonnegative. Here we utilize a new ap-
proach that allows us to reduce the minimum cycle
problem in directed graphs with integral weights in the
interval [−M,M] to the minimum triangle problem in
undirected graphs with weights in [−M,M]. Our result
is more general than before. However this comes at a

cost: the reduction no longer takes nearly quadratic time,
but consumes Õ(Mnω) time.

Our approach uses the fact that Lemma 1 applies for
every vertex of a cycle, together with a result by Yuster
and Zwick [20] given in Theorem 7 below.

Theorem 7 (Yuster and Zwick ’05). Given an n-node
directed graph with integral edge weights in the interval
[−M,M], in Õ(Mnω) time one can compute an n×n
matrix D such that the i, j entry of the distance product
D ?D contains the distance between i and j.

The matrix D can contain entries with values as
large as Ω(Mn) and so D ? D is not known to be
computable in truly subcubic time, even when M is
small. Nevertheless, the theorem applies to general
graphs with positive or negative weights. It also gives
an Õ(Mnω) time algorithm for detecting a negative
cycle in a graph, and is extremely useful in computing
minimum cycles.

The Yuster-Zwick algorithm proceeds in stages. In
each stage `, a node subset sample B` is maintained
so that each node is in B` with probability at least
min{1, 9(2/3)` lnn}. They prove the following lemma.

Lemma 6 (Yuster and Zwick ’05). For every stage `
and any node s ∈ B` and node v ∈ V , the algorithm
has estimates D[s, v] and D[v, s], so that if the shortest
path from s to v has at most (3/2)` edges then D[s, v] =
d[s, v], with high probability. Similarly, if the shortest
path from v to s has at most (3/2)` edges then D[v, s] =
d[v, s] with high probability.

The Yuster-Zwick algorithm also provides a matrix
Π of predecessors so that if k = Π[i, j], then k is
the predecessor of j on a simple path from i to j of
weight D[i, j]. Similarly, one can obtain a matrix Π′ of
successors so that if k = Π′[i, j], then k is the successor
of i on a simple path from i to j of weight D[i, j].

Now, first use the algorithm to check whether the
given graph has a negative cycle. If it does not, then
let C be the minimum weight cycle, w(C) ≥ 0. Recall
that n(C) is the number of vertices/edges on C. Let `
be the minimum value so that n(C) ≤ (3/2)`. Note that
then n(C) ≥ (3/2)`−1. The probability that a particular
node s of C is not in B` is at most 1− (2/3)`(9 lnn).
The events are independent for all s in C, and since
n(C) ≥ (3/2)`−1, the probability that no node of C is
in B` is at most (1− (2/3)`(9 lnn))(3/2)

`−1 ≤ 1/n6.

Thus the probability that some node s of C is in B`

is 1− poly−1(n); furthermore by Lemma 6 (with high
probability) for all x ∈ C, the Yuster-Zwick algorithm
has computed D[s, x] = d[s, x] and D[x, s] = d[x, s],

since the number of edges on the respective shortest
paths are at most n(C) ≤ (3/2)`.

In particular, this means that D[s, vi] = d[s, vi] and
D[vi+1, s] = d[vi+1, s] for the critical edge (vi, vi+1)
for s on C as Lemma 1 applies for every vertex of
C. Moreover, since C is a minimum weight cycle with
w(C) ≥ 0, by Lemma 1, the paths between s and vi
and vi+1 and s on C are both shortest paths. Thus,
with high probability, dC [s, vi] = d[s, vi] = D[s, vi]
and dC [vi+1, s] = d[vi+1, s] = D[vi+1, s].

Creating the minimum triangle instance G′: G′

will still be undirected, but unlike the construction for
undirected graphs, G′ will now be tripartite. The vertex
set V ′ of G′ has partitions V 1, V 2, V 3 which are all
copies of V .

The construction is as follows. For every directed
edge (u, v) of G, add an edge from u2 ∈ V 2 to v3 ∈ V 3

with weight w(u, v). Furthermore, for every two nodes
x, y so that D[x, y] <∞ add an edge from x1 ∈ V 1 to
y2 ∈ V 2 and one from x3 ∈ V 3 to y1 ∈ V 1, each with
weight D[x, y]. Hence the edges between x1 ∈ V 1 and
y2 ∈ V 2 correspond to directed paths from x to y, and
the edges between x3 ∈ V 3 and y1 ∈ V 1 correspond
to directed paths from y to x. Hence any triangle in G′

corresponds to a directed closed walk in G. However,
any such closed walk must contain a simple cycle of
no larger weight: If the walk is not simple, find a
closest pair of copies of a node v on the walk. These
copies enclose a simple cycle C ′′ in G. Now, either
C ′′ has no larger weight than the walk, or removing
it from the walk produces a smaller closed walk of
negative weight, and hence G contains a negative cycle,
which we assumed is not the case. Since G′ contains no
false positives, the minimum triangle of G′ corresponds
exactly to C.

Weight reduction: As in the construction for undi-
rected graphs, the maximum edge weight in G′ can be
as large as Ω(nM). Here we give a different way to
reduce them to the interval [−M,M].

Let t be a parameter that we will be changing. Intu-
itively, our goal will be to set t to roughly bw(C)/2c;
it will be sufficient for t to be ≤ bw(C)/2c.

Initially, t = Mn. Now, check whether there is a
triangle a1 ∈ V 1, b2 ∈ V 2, c3 ∈ V 3 in G′ so that
D[a1, b2], D[c3, a1] ≤ t. We run a binary search on t in
the interval [0,Mn], until we find the smallest t such
that there is such a triangle. Each search can be done
using Boolean matrix product: create a matrix A which
is 1 wherever D is ≤ t and 0 otherwise; multiply A by
itself and check for a triangle closed by an edge (b2, c3),
b2 ∈ V 2, c3 ∈ V 3. This takes O(nω logw(C)) time.

Let (whp) {s1, v2i , v3i+1} be the triangle in G′

that corresponds to the minimum cycle C of
G. Since {s1, v2i , v3i+1} is a valid triangle, and
dC [s, vi], dC [vi+1, s] ≤ bw(C)/2c by Lemma 1,
then after the completion of the binary search, t ≤
bw(C)/2c. Furthermore, since C is a minimum cycle
and by the definition of t, w(C) ≤ 2t + w(e), where e
is some edge in G, which implies that w(C) ≤ 2t+M .
Hence, t ≤ bw(C)/2c and w(C)/2 ≤ t + M/2.

Now, remove from G′ every edge (c3, a1) ∈ V 3×V 1

with D[c3, a1] > t+M/2 and every (a1, b2) ∈ V 1×V 2

with D[a1, b2] > t + M/2. If an edge has weight ≤
bw(C)/2c ≤ t + M/2, it is not removed. In particular,
(s1, v2i) and (v3i+1, s

1) are still edges, by Lemma 1.
Remove every (c3, a1) ∈ V 3 × V 1 with D[c3, a1] <

t−M and every (a1, b2) ∈ V 1 × V 2 with D[a1, b2] <
t − M . If an edge has weight ≥ bw(C)/2c − M ≥
t−M , then it is not removed. Hence again (s1, v2i) and
(v3i+1, s

1) are not removed because their weight is at
least t−M as follows from Lemma 1.

All remaining edges in (V 3×V 1)∪ (V 1×V 2) have
integral weights in [t−M, t+M/2], and C is still repre-
sented by the minimum triangle {s1, v2i , v3i+1}. Now, for
every remaining edge (a, b) ∈ (V 1×V 2)∪ (V 3×V 1),
change its weight to D[a, b]−t. The weights of the edges
of G′ are now in the interval [−M,M]. Furthermore,
since the weights of all triangles have decreased by
2t, the minimum triangle of G′ is still the same. This
completes the construction of G′.

Derandomization: The only randomized part of
our reduction is our use of Yuster and Zwick’s result.
Their algorithm can be derandomized (see [20]) without
affecting our use of their result. Hence, we obtain a
deterministic reduction which runs in O(Mnω log n +
nω(logMn) log n) time and does not increase the graph
size or the edge weights by more than a constant factor.

Acknowledgments: The second author would like
to thank Satish Rao and Ryan Williams for their valu-
able comments. The first author was supported by ISF
grant no. 822/10. The second author was supported by
NSF Grant #0963904 and NSF Grant #0937060 to the
CRA for the CIFellows Project. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the NSF or the CRA.

REFERENCES

[1] N. Alon, Z. Galil, and O. Margalit, “On the exponent
of the all pairs shortest path problem,” J. Comput. Syst.
Sci., vol. 54, no. 2, pp. 255–262, 1997.

[2] N. Alon, R. Yuster, and U. Zwick, “Color-coding,”
JACM, vol. 42, no. 4, pp. 844–856, 1995.

[3] E. Arkin and C. H. Papadimitriou, “On negative cycles
in mixed graphs,” Operations Research Letters, vol. 4,
no. 3, pp. 113–116, 1985.

[4] D. Coppersmith and S. Winograd, “Matrix multiplication
via arithmetic progressions,” J. Symbolic Computation,
vol. 9, no. 3, pp. 251–280, 1990.

[5] D. Dor, S. Halperin, and U. Zwick, “All-pairs almost
shortest paths,” SIAM J. Comput., vol. 29, no. 5, pp.
1740–1759, 2000.

[6] R. W. Floyd, “Algorithm 97: shortest path,” Comm.
ACM, vol. 5, p. 345, 1962.

[7] M. Fredman, J. Komlós, and E. Szemerédi, “Storing a
sparse table with O(1) worst case access time,” JACM,
vol. 31, pp. 538–544, 1984.

[8] Z. Galil and O. Margalit, “All pairs shortest paths for
graphs with small integer length edges,” JCSS, vol. 54,
pp. 243–254, 1997.

[9] A. Goldberg, “Scaling algorithms for the shortest paths
problem,” in Proc. SODA, 1993, pp. 222–231.

[10] A. Itai and M. Rodeh, “Finding a minimum circuit in a
graph,” SIAM J. Computing, vol. 7, no. 4, pp. 413–423,
1978.

[11] A. Lingas and E.-M. Lundell, “Efficient approximation
algorithms for shortest cycles in undirected graphs,” Inf.
Process. Lett., vol. 109, no. 10, pp. 493–498, 2009.

[12] S. Pettie, “A new approach to all-pairs shortest paths
on real-weighted graphs,” Theor. Comput. Sci., vol. 312,
no. 1, pp. 47–74, 2004.

[13] L. Roditty and R. Tov, “Approximating the girth,” in
Proc. SODA, 2011, pp. 1446–1454.

[14] L. Roditty and V. V. Williams, “Minimum weight cycles
and triangles: Equivalences and algorithms,” CoRR, vol.
abs/1104.2882, 2011.

[15] J. Schmidt and A. Siegel, “The spatial complexity of
oblivious k-probe hash functions,” SIAM J. Comput.,
vol. 19, no. 5, pp. 775–786, 1990.

[16] R. Seidel, “On the all-pairs-shortest-path problem in
unweighted undirected graphs,” JCSS, vol. 51, pp. 400–
403, 1995.

[17] A. Shoshan and U. Zwick, “All pairs shortest paths in
undirected graphs with integer weights,” in Proc. FOCS,
1999, pp. 605–614.

[18] S. Warshall, “A theorem on Boolean matrices,” J. ACM,
vol. 9, no. 1, pp. 11–12, 1962.

[19] V. V. Williams and R. Williams, “Subcubic equivalences
between path, matrix and triangle problems,” in Proc.
FOCS, 2010, pp. 645–654.

[20] R. Yuster and U. Zwick, “Answering distance queries
in directed graphs using fast matrix multiplication,” in
Proc. FOCS, 2005, pp. 389–396.

[21] G. Yuval, “An algorithm for finding all shortest paths
using N2.81 infinite-precision multiplications,” Inf. Proc.
Letters, vol. 4, pp. 155–156, 1976.

[22] U. Zwick, “All pairs shortest paths using bridging sets
and rectangular matrix multiplication,” JACM, vol. 49,
no. 3, pp. 289–317, 2002.

